189 research outputs found

    End-to-end weakly-supervised semantic alignment

    Get PDF
    We tackle the task of semantic alignment where the goal is to compute dense semantic correspondence aligning two images depicting objects of the same category. This is a challenging task due to large intra-class variation, changes in viewpoint and background clutter. We present the following three principal contributions. First, we develop a convolutional neural network architecture for semantic alignment that is trainable in an end-to-end manner from weak image-level supervision in the form of matching image pairs. The outcome is that parameters are learnt from rich appearance variation present in different but semantically related images without the need for tedious manual annotation of correspondences at training time. Second, the main component of this architecture is a differentiable soft inlier scoring module, inspired by the RANSAC inlier scoring procedure, that computes the quality of the alignment based on only geometrically consistent correspondences thereby reducing the effect of background clutter. Third, we demonstrate that the proposed approach achieves state-of-the-art performance on multiple standard benchmarks for semantic alignment.Comment: In 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018

    Convolutional neural network architecture for geometric matching

    Get PDF
    We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.Comment: In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017

    Antitrust Standing of Target Corporations to Enjoin Hostile Takeovers Under Section 16 of the Clayton Act

    Get PDF
    Joint understanding of video and language is an active research area with many applications. Prior work in this domain typically relies on learning text-video embeddings. One difficulty with this approach, however, is the lack of large-scale annotated video-caption datasets for training. To address this issue, we aim at learning text-video embeddings from heterogeneous data sources. To this end, we propose a Mixture-of-Embedding-Experts (MEE) model with ability to handle missing input modalities during training. As a result, our framework can learn improved text-video embeddings simultaneously from image and video datasets. We also show the generalization of MEE to other input modalities such as face descriptors. We evaluate our method on the task of video retrieval and report results for the MPII Movie Description and MSR-VTT datasets. The proposed MEE model demonstrates significant improvements and outperforms previously reported methods on both text-to-video and video-to-text retrieval tasks

    Weakly-supervised learning of visual relations

    Full text link
    This paper introduces a novel approach for modeling visual relations between pairs of objects. We call relation a triplet of the form (subject, predicate, object) where the predicate is typically a preposition (eg. 'under', 'in front of') or a verb ('hold', 'ride') that links a pair of objects (subject, object). Learning such relations is challenging as the objects have different spatial configurations and appearances depending on the relation in which they occur. Another major challenge comes from the difficulty to get annotations, especially at box-level, for all possible triplets, which makes both learning and evaluation difficult. The contributions of this paper are threefold. First, we design strong yet flexible visual features that encode the appearance and spatial configuration for pairs of objects. Second, we propose a weakly-supervised discriminative clustering model to learn relations from image-level labels only. Third we introduce a new challenging dataset of unusual relations (UnRel) together with an exhaustive annotation, that enables accurate evaluation of visual relation retrieval. We show experimentally that our model results in state-of-the-art results on the visual relationship dataset significantly improving performance on previously unseen relations (zero-shot learning), and confirm this observation on our newly introduced UnRel dataset

    Weakly-supervised learning of visual relations

    Get PDF
    This paper introduces a novel approach for modeling visual relations between pairs of objects. We call relation a triplet of the form (subject, predicate, object) where the predicate is typically a preposition (eg. 'under', 'in front of') or a verb ('hold', 'ride') that links a pair of objects (subject, object). Learning such relations is challenging as the objects have different spatial configurations and appearances depending on the relation in which they occur. Another major challenge comes from the difficulty to get annotations, especially at box-level, for all possible triplets, which makes both learning and evaluation difficult. The contributions of this paper are threefold. First, we design strong yet flexible visual features that encode the appearance and spatial configuration for pairs of objects. Second, we propose a weakly-supervised discriminative clustering model to learn relations from image-level labels only. Third we introduce a new challenging dataset of unusual relations (UnRel) together with an exhaustive annotation, that enables accurate evaluation of visual relation retrieval. We show experimentally that our model results in state-of-the-art results on the visual relationship dataset significantly improving performance on previously unseen relations (zero-shot learning), and confirm this observation on our newly introduced UnRel dataset

    Occlusion resistant learning of intuitive physics from videos

    Get PDF
    To reach human performance on complex tasks, a key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation. This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences. Yet, most of these methods are restricted to the case where no, or only limited, occlusions occur. In this work we propose a probabilistic formulation of learning intuitive physics in 3D scenes with significant inter-object occlusions. In our formulation, object positions are modeled as latent variables enabling the reconstruction of the scene. We then propose a series of approximations that make this problem tractable. Object proposals are linked across frames using a combination of a recurrent interaction network, modeling the physics in object space, and a compositional renderer, modeling the way in which objects project onto pixel space. We demonstrate significant improvements over state-of-the-art in the intuitive physics benchmark of IntPhys. We apply our method to a second dataset with increasing levels of occlusions, showing it realistically predicts segmentation masks up to 30 frames in the future. Finally, we also show results on predicting motion of objects in real videos

    On Pairwise Costs for Network Flow Multi-Object Tracking

    Full text link
    Multi-object tracking has been recently approached with the min-cost network flow optimization techniques. Such methods simultaneously resolve multiple object tracks in a video and enable modeling of dependencies among tracks. Min-cost network flow methods also fit well within the "tracking-by-detection" paradigm where object trajectories are obtained by connecting per-frame outputs of an object detector. Object detectors, however, often fail due to occlusions and clutter in the video. To cope with such situations, we propose to add pairwise costs to the min-cost network flow framework. While integer solutions to such a problem become NP-hard, we design a convex relaxation solution with an efficient rounding heuristic which empirically gives certificates of small suboptimality. We evaluate two particular types of pairwise costs and demonstrate improvements over recent tracking methods in real-world video sequences

    Evolving Structures in Complex Systems

    Full text link
    In this paper we propose an approach for measuring growth of complexity of emerging patterns in complex systems such as cellular automata. We discuss several ways how a metric for measuring the complexity growth can be defined. This includes approaches based on compression algorithms and artificial neural networks. We believe such a metric can be useful for designing systems that could exhibit open-ended evolution, which itself might be a prerequisite for development of general artificial intelligence. We conduct experiments on 1D and 2D grid worlds and demonstrate that using the proposed metric we can automatically construct computational models with emerging properties similar to those found in the Conway's Game of Life, as well as many other emergent phenomena. Interestingly, some of the patterns we observe resemble forms of artificial life. Our metric of structural complexity growth can be applied to a wide range of complex systems, as it is not limited to cellular automata.Comment: IEEE Symposium Series on Computational Intelligence 2019 (IEEE SSCI 2019
    • …
    corecore